Cramer-Rao lower bounds for atomic decomposition

نویسندگان

  • Jeffrey C. O'Neill
  • Patrick Flandrin
چکیده

In a previous paper [1] we presented a method for atomic decomposition with chirped, Gabor functions based on maximum likelihood estimation. In this paper we present the Cramér-Rao lower bounds for estimating the seven chirp parameters, and the results of a simulation showing that our sub-optimal, but computationally tractable, estimators perform well in comparison to the bound at low signal-to-noise ratios. We also show that methods based on signal dictionaries will require much higher computations to perform well in low signal-to-noise ratios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays

Unlike low-rank matrix decomposition, which is generically nonunique for rank greater than one, low-rank threeand higher dimensional array decomposition is unique, provided that the array rank is lower than a certain bound, and the correct number of components (equal to array rank) is sought in the decomposition. Parallel factor (PARAFAC) analysis is a common name for low-rank decomposition of ...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

Bayesian Cramer-Rao bounds for complex gain parameters estimation of slowly varying Rayleigh channel in OFDM systems

This paper deals with on-line Bayesian Cramer-Rao (BCRB) lower bound for complex gains dynamic estimation of time-varying multi-path Rayleigh channels. We propose three novel lower bounds for 4QAM OFDM systems in case of negligible channel variation within one symbol, and assuming both channel delay and Doppler frequency related information. We derive the true BCRB for data-aided (DA) context a...

متن کامل

Cramer-Rao Type Integral Inequalities for General Loss Functions

Cramer-Rao type integral inequalities where developed for loss functions w(x) which are bounded below by functions of the type g(x) = c|x|l, l > 1. As applications, we obtain lower bounds of Hajek-LeCam type for locally asymptotic minimax error for such loss functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999